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PolarimetryPolarimetry : Impact on Spin Physics: Impact on Spin Physics
Single Spin Asymmetries Physics Asymmetries
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1Double Spin Asymmetries

measured spin asymmetries normalized by PB to extract Physics Spin Observables
normalization ⇒ scale uncertainty
polarimetric process with large σ and known AN
– pC elastic scattering in CNI region
– AN almost calculable, but small ~ 1 – 4 %
– need absolute “calibration”

RHIC Spin Program requires ∆Pbeam / Pbeam < 0.05
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Elastic Elastic ppCC →→ ppCC scattering at low scattering at low tt

recoil
Carbon

polarized
beam

scattered
proton

Carbon
target

t = (pout – pin)2 < 0
≈ Tkin ⋅ 2 MC

0.005 < |t| < 0.05 (GeV/c)2
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rightleft
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1. AN from interference of spin non-flip and spin flip amplitudes
⇒ spin dependence of interaction
⇒ hadronic spin flip (spin-coupling of Pomeron)

2. Polarimetry
− almost “calculable”
− small AN ~ 1− 4 % ⇒ requires large statistics > 107

− large cross section
− weak beam momentum dependence (p > 20 GeV/c) ?
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AANN: from where does it come?: from where does it come?

flip
had

flipnon
had

flipnon
had

flip
emN CCA ΦΦ+ΦΦ= −−

21

σ =  |Ahadronic + ACoulomb|2   ( |P + γ|2 )

around t ~ −10−3 (GeV/c)2 Ahadronic ≈ ACoulomb ⇒ INTERFERENCE
CNI = Coulomb – Nuclear Interference

unpolarized ⇒ clearly visible in the cross section dσ/dt   (charge)
polarized ⇒ left – right asymmetry AN (magnetic moment)

QED ⇒ “calculable”, expect AN ≠ 0 up to 4 − 5%

QCD ⇒ “unpredictable”, need direct measurement

∝(µ−1)p ∝√σpp
had

B. Kopeliovich & L.Trueman
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Some ASome AN N measurements in CNI regionmeasurements in CNI region
pp Analyzing Power

no hadronic
spin-flip

t

A
N

(%
)

E704@FNAL
p = 200 GeV/c

r5
pC ∝ Fs

had / Im F0
had

Re r5 =    0.088 ± 0.058
Im r5 =  −0.161 ± 0.226
highly anti-correlated

E950@BNL
p = 21.7 GeV/c

with hadonic
spin-flip

no hadronic
spin-flip

pC Analyzing Power

if used for polarimetry
⇒ ∆P/P ~ 15 – 20%
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RHIC: the “Polarized” RHIC: the “Polarized” ColliderCollider
70% Polarization   Lmax = 2 × 1032 s-1cm-2 50 < √s < 500 GeV

BRAHMS 
& PP2PP

STAR
PHENIX

AGS
BOOSTER

Pol. Proton Source

Spin Rotators
20% Snake

Siberian Snakes

200 MeV polarimeter

AGS inelastic polarimeter

PHOBOS

RHIC

absolute pH
polarimeter

Siberian
Snakes

AGS pC “CNI” polarimeter

5% Snake

RHIC pC “CNI”
polarimeters

LINAC

Rf Dipoles
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Elastic Elastic pp↑↑C Scattering Setup in the AGS RingC Scattering Setup in the AGS Ring
ultra-thin Carbon 
ribbon (target)
5 µg/cm2

600 µm wide

25 cm

beam
direction p↑↑ p↑↑

rightleft

Si strip detectors
12 vertical strips

read-out with
waveform digitizers

beam12 mm

24 mm
similar setups in RHIC for each beam
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Event SelectionEvent Selection
recoil carbons detected with Si detectors

“identified” via ToF vs Tkin correlation 
⇒ inv. mass recoil
gives only “particle ID”

position vs energy correlation spoiled 
by multiple scattering in target
background from beam dissociation 
very small for this kinematics

∆ (Tof) ~ 20 ns from bunch length
(⇒ σΜ ~ 1.5 GeV)

background events < few %
within the “banana” cut

very high event rate (> 105 ev/sec/ch)
events acquired with dead time free
wave-form digitizers

C

MR ~ 11 GeV
σΜ ~ 1.5 GeVC* → α

Tkin = ½ MR (dist / ToF)2

non-relativistic kinematics

MR
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does not
pass

the cuts

Time of Flight vs. Energy i.e.Time of Flight vs. Energy i.e.
event

selection

does
pass

the cuts
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DAQ and WFDDAQ and WFD

ADC
3×140 MHz

synchronized to accelerator clocks
bunch ×-ing ⇒ “start” TDC~50ns

~100mV
“online” analysis of waveform
performed beteween consecutive
bunch ×-ing 
⇒ PH, tot Q, t.o.f

FPGA

∆t ~ 2 ns
∆E < 50 keV

onboard
memory DAQ PC

Wave Form Digitizer = peak sensing ADC, CFD, …
deadtimless DAQ system ⇒ no spin dependent dead time !
can accept, analyze, and store 1 event / each bunch ×-ing
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pp↑↑C C rawraw asymmetry at 24.3 asymmetry at 24.3 GeVGeV

AN
th from a fit to E950 data

at 21.7 GeV over similar t range
L. Trueman hep-ph/0305085
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〈AN〉 ≈ 1.12
0.009 < |t| < 0.022 (GeV/c)2

PB ~ 0

B

recoil Carbon energy (keV)

ε 
= 

P B
•

A
N

calculated over several t bins
pre

lim
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ry

normalization region

P ~ 37 – 42 %
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AANN pp↑↑CC →→ ppCC at 24.3 at 24.3 GeVGeV

pre
lim

ina
ry

recoil Carbon energy (keV)

A
N

(%
) • only statistical errors are shown

• normalization error (i.e. PB)
~ 25% (relative)

• systematic error
(background, pileup, etc.)
< 20% (relative)

fit to E950 data
L. Trueman hep-ph/0305085

similar behavior E950 ⇒
substantial hadronic spin-flip
confirmed
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AGS PolarizationAGS Polarization vsvs Energy (2003)Energy (2003)

Simulation (2003)
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24−νy 12+νy0+νy 36−νy 24+νy 48−νy 36+νy

Simulation (1997)
Experiment data (1997)

Experiment data (2000)

Simulation (2000)
Experiment data (2002)

Simulation (2002)
Experiment data (2003)

Simulation (2003)

Full spin flip at all imperfection resonances 
using a solenoidal partial Siberian snake

Full spin flip at strong intrinsic resonances 
using an rf AC dipole (spin flipper)

Remaining polarization losses are from 
coupling and weak intrinsic resonances

Almost 2 × improvement (on avarage) 
compared to 2002 run

Consistently measured polarizations of  
45%; also reached 50% on occasions

Small emittance beam of 10 π with 
scraping: intensity ~ 6 x 1010 p / bunch

Add a 5% warm helical snake (run ’04)

To avoid all depolarization build a strong 
(20%) super-conducting helical Siberian 
snake snake (2005-2006)

imperfection resonances every integer        

2.6 GeV 24.7 GeV

Extraction 
to RHIC

Gγ = 46.5

intrinsic resonances

Gγ = 1.91 Ebeam
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AGS Polarization during acceleration (ramp)AGS Polarization during acceleration (ramp)

Gγ
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12+ν 36-ν 36+ν
Gγ = 1.91 Ebeam

resonances:
intrinsic: Gγ =
imperfection: Gγ = n

48- ν

each point = 50 MeV/c
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Spin DynamicsSpin Dynamics

Spin Precession in Laboratory Frame:
(Thomas [1927], Bargmann, Michel, Telegdi [1959])

dS/dt = − (e/γm) [(Gγ+1)B⊥ + (1+G) Bο] × S      Gγ = 1.91 E

Lorentz Force

dv/dt = − (e/γm) [       B⊥ ] × v

• For pure vertical field:
Spin rotates Gγ times faster than motion, νsp = Gγ

• For spin manipulation:
at low energy, use longitudinal fields
at high energy, use transverse fields

B⊥

S

v
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Depolarizing SpinDepolarizing Spin ResonancesResonances ……

Spin tune: Number of 360 degree spin rotations (spin precessions) per turn

Depolarizing resonance condition:
Number of spin rotations per turn = Number of spin kicks per turn

Imperfection resonance (magnet errors and misalignments, closed orbit errors, …):

Gγ = νsp = n

Intrinsic resonance (vertical focusing fields like in quadrupoles, finite beam 
emittance, …):

Gγ = νsp = Pn ±νy

P: Superperiodicity [AGS: 12]
νy: Betatron tune [AGS: 8.75]

Resonance conditions can be avoided through the use of “Siberian Snakes” (RHIC) 
or by forcing a full spin reversal, when crossing these resonances (AGS)
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Imperfection Imperfection ResonancesResonances: : Gγ = n
partial snake (AGS) =
imperfection resoance

Gγ = n

S

δ

Gγ = n + 1/2

S

δ
1

if snake sufficiently strong (5% 
enough in AGS) spin is fully flipped
when crossing an imperfection 
resonance with no polarization loss

for Gγ ≠ n, spin “oscillates” around 
stable direction, which is tilted from 
the vertical 

S

2δ

S

δ

S

3δ

δ

S

2

3
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Intrinsic Intrinsic ResonancesResonances: : Gγ = nP + ν

δ

2δ

betatron oscillation of frequency ν

if spin precession “in phase” with
betatron oscillation Gγ = ν
when crossing the quadrupole
depolarizing kicks δ add
⇒ depolarizing resonance condition

quadrupole

S N

N S

to be in phase with betatron oscillation over a 
closed orbit spin must precess n + ν times

in a periodic accelerator spin “in phase” with 
betatron oscillation when crossing same 
quadrupole in consecutive FODO section if
Gγ = nP + ν
Polarization losses reduced / avoided by 
forcing a full spin reversal (flip) using
an RF dipole

FODO section

Q

Q

Q Q“AGS”
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AANN pp↑↑CC →→ ppCC at 3.9, 6.5, 9.7 & 21.7 at 3.9, 6.5, 9.7 & 21.7 GeVGeV

only statistical errors
are shown

normalization errors:
~ 10 % (at 3.9)
~ 15 % (at 6.5)
~ 20 % (at 21.7)

systematic errors:
< 20 %
- backgrounds
- pileup
- RF noise

recoil Carbon energy (keV)

p = 3.9 GeV

p = 21.7 GeV

p = 9.7 GeV

pre
lim

ina
ryCNI

peak
~ 4 %

〈PB〉 ~ 73 %

〈PB〉 ~ 65 %

〈PB〉 ~ 47 %

p = 6.5 GeV

A
N

(%
)

momentum transfer –t (GeV2/c2)

〈PB〉 ~ 60 %

statistical errors only
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Calibration of AGS Calibration of AGS pCpC CNI CNI polarimeterpolarimeter
Quasi-elastic pp scattering
p↑ + C → p + p + X
at t ∼ − 0.15 GeV2/c2

Approximately symmetric recoil 
telescopes of plastic scintillation 
counters

Targets are thin fiber ribbons and 
nylon (fishline)

For absolute calibrations forward 
scintillators were added
The practical limit to this technique     
is P < 7 GeV/c (counters outside of 
beam pipe)

Use a fit to pp polarization data to 
find AN (pp)  (NIM 211, 239 (1983))

Three forward
counters each
side of the 
beam, outside
the beam pipe.

E880 polarimeter:
C.E. Allgower et al.,
Phys. Rev. D65,
092008 (2002)



Spin-03 Alessandro Bravar

AANN pp↑↑CC →→ ppCC: Energy Dependence: Energy Dependence
A

N
(%

)

Beam Energy (GeV)

pre
lim

ina
ry

t = - 0.01 GeV2

t = - 0.02 GeV2

t = - 0.03 GeV2

t = - 0.04 GeV2

statistical errors only

only statistical errors
are shown
systematic errors
as for previous slide

Asymptotic regime

E ?
No energy dependence
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AANN pp↑↑CC →→ ppCC at 21.7 at 21.7 GeVGeV

recoil Carbon energy (keV)

A
N

(%
)

pre
lim

ina
ry

momentum transfer –t (GeV2/c2)
normalized with
p↑ + C → p + p + X
quasi-elastic
polarimeter
inside AGS ring
(E880 experiment)
∆Pbeam / Pbeam ~ 20%

only statistical
errors are shown
(also for E950)

systematic error < 20%

this experiment
E950

statistical errors only
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AANN: : pp↑↑CC →→ ppCC at RHIC energy (100 at RHIC energy (100 GeVGeV))

recoil Carbon energy (keV)

N

pre
lim

ina
ry

“ CNI ”

blue beam
yellow beam

AGS

A
(%

)

for normalization assume
AN (24.3 GeV) = AN (100 GeV)
i.e. no energy dependence
[0.009 < |t| < 0.022 (GeV/c)2 ]

very similar shape of the t dependence
at 24 and 100 GeV

⇒ suggestive of very small
energy dependence for AN between
24 and 100 GeV

systematic error for RHIC data < 30 %
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AANN: : pp↑↑CC →→ ppCC from RHIC from RHIC polarimeterspolarimeters

Blue 100GeV
Blue 24GeV

Yellow 100GeV
Yellow 24GeV

AN fit to E950 data
L.Trueman hep-ph/0305085

O. Jinnouchi

assuming same AN (E950) at 24.3 and 100 GeV
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RHIC Polarization from Run ‘03RHIC Polarization from Run ‘03
Blue at injection

Blue at flattop

Yellow at injection

Yellow at flattop

N
N

beam A
P ε⋅=

1

not yet well known
assume same
at injection and flattop

polarization on average

• at injection 
•Blue ~ 35 - 40%
•Yellow ~ 35 - 40%

• at flattop
•Blue ~ 25 - 35%
•Yellow ~ 20 - 30%

being analyzed
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AGS Polarization during acceleration (ramp)AGS Polarization during acceleration (ramp)
B

ea
m

 P
ol

ar
iz

at
io

n

Gγ = 1.91 Ebeam

each point = 50 MeV/c

resonances:
intrinsic: Gγ =
imperfection: Gγ = n

36-ν 36+ν
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AGS Polarization AGS Polarization SystematicsSystematics
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Gγ = 1.91 Ebeam 36+ν

consitent with smooth polarization loss
between 10 and 23 GeV

at 36 + ν loose ~ 15 %

P B
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A. ZelenskiNext: Next: pp↑↑pp, , pppp↑↑ and and pp↑↑pp↑↑
with a Polarized Gas Jet Targetwith a Polarized Gas Jet Target

•RHIC absolute polarimeter
calibrate pC polarimeters to < 5%

•Polarized Hydrogen Gas Jet Target
thickness of  >  1012 p/cm2

polarization  >  90%
almost pointlike

•Silicon recoil detectors

•Rate:  125 Hz  for  0.001 < |t| < 0.02 (GeV/c)2

•Measure AN
pp in pp elastic scattering 

in the CNI region to ∆AN < 10-3 accuracy

•Install for the ‘04 run

•Initially measure PB to 10%
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The Polarized Jet Target under constructionThe Polarized Jet Target under construction

BRP vacuum vessel

Turbo pump controllers

Dissociator RF systems

Vac. gauges monitors

Target chamber &
beam pipe adapters

Electronics racks Dissociator stage
Baffle location
Sextupoles 1-4

Sextupoles 5-6

Profile measurement

Magnet ready 
for measurements
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JetJet--Target Holding Magnetic Field (1.0)Target Holding Magnetic Field (1.0)

∫ Bdl ~ 0

di
sp

la
ce

m
en

t (
cm

)  
  

B
z

(G
au

ss
)

p = 30 MeV/c (|t|~10-3)

p = 100 MeV/c (|t|~10-2)

+  - +

1.0 kGauss Helmholtz coils

almost no effect on recoil
proton trajectories:

left – right hit profiles &
left – right acceptances
almost equal
(also under reversal of
holding field)
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Elastic Elastic pppp identification:identification: tt vsvs ϑR

reconstructed from:
1.   deposited energy
2.   hit position

recoil spectrometer resolutions:
∆ϑR= targ. ext. / dist. ~ 3 mrad
|t| = 2 mp Tkin ; ∆ Tkin < 50 keV
∆τ ~ 2 ns

ϑR (mrad)

|t|
 (G

eV
2 )
pp →Xp kinematically
forbidden allowed

Si acc. (70 mm)

|t| = 0.01

elastic      (p + π) pp →Xp
[threshold]

ϑR (mrad)
X = proton

(p + π) threshold

@FNAL σ(pp → Xp) at threshold
~ 0.01 × σ (elastic)!

M2
X
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The Road to The Road to PPbeambeam
Requires several independent measurements

0 target polarization Ptarget (Breit-Rabi polarimeter)

1 AN for elastic pp in CNI region: AN = 1 / Ptarget εN’

2 Pbeam = 1 / AN εN”
1 & 2 can be combined in a single measurement: Pbeam / Ptarget = - εN’ / εN”
“self calibration” works for elastic scattering only

3 CALIBRATION: AN
pC for pC CNI polarimeter in detector kinematical range:

AN
pC = 1 / Pbeam εN”’

(1 +) 2 + 3 measured simultaneously with several insertions of carbon target

4 BEAM POLARIZATION: Pbeam = 1 / AN
pC εN”” to experiments

at each step pick-up some measurement errors:

%6
arg

arg ≤
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N

ppett
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ε
ε expected

precision

transfer calibration measurement
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SummarySummary
measured AN

pC for elastic pC → pC scattering
– 0.005 < |t| < 0.05 (GeV/c)2 & 3.5 < pbeam < 24 GeV/c

pbeam < 10 GeV/c
– almost no t dependence
– departure from “CNI” behavior

pbeam > 20 GeV/c
– very similar t dependence at 24 and 100 GeV
– suggestive of small (or no) energy dependence ?
– consistent with hadronic spin-flip @ 10% − 15% level

2004 run
– extend t range (lower and higher |t|)
– more energy points
– first measurements of AN

pp for pp → pp with polarized gas jet target
phenomenological analysis soon

polarimetry
– works reliably, fast measurements of Pbeam in few min / 30 sec.
– “absolute” calibration at higher energies ⇒ polarized gas jet target
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